
CNT 4714: Servlets – Part 2 Page 1 Dr. Mark Llewellyn ©

CNT 4714: Enterprise Computing

Fall 2011

Introduction to Servlet Technology– Part 2

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

 markl@cs.ucf.edu

 HEC 236, 407-823-2790

 http://www.cs.ucf.edu/courses/cnt4174/fall2011

CNT 4714: Servlets – Part 2 Page 2 Dr. Mark Llewellyn ©

More Tomcat Details
• If your system does not recognize “localhost”, enter

http://127.0.0.1:8080 instead of http://localhost:8080.
Address 127.0.0.1 basically means “this machine” which is
the same as localhost.

• From the Tomcat homepage you can also act as the server
administrator and manager. You will need to do things on
the administrator side (you must have set the host manager
application during the installation process, (see page 28 of
Servlets Part 1)), it is interesting to go into the manager side
of things and look at the server from the server’s point of
view. It may also be necessary to reload applications
occasionally (more on this later), which can be done from the
manager application. See page 3 for an example.

• Checking the status of the server can also be accomplished
from the Tomcat homepage. See page 4 for a sample.

http://127.0.0.1:8080/
http://127.0.0.1:8080/
http://127.0.0.1:8080/
http://127.0.0.1:8080/
http://127.0.0.1:8080/
http://127.0.0.1:8080/
http://127.0.0.1:8080/
http://127.0.0.1:8080/
http://127.0.0.1:8080/
http://127.0.0.1:8080/
http://127.0.0.1:8080/
http://127.0.0.1:8080/
http://localhost:8080/
http://localhost:8080/
http://localhost:8080/
http://localhost:8080/
http://localhost:8080/

CNT 4714: Servlets – Part 2 Page 3 Dr. Mark Llewellyn ©

CNT 4714: Servlets – Part 2 Page 4 Dr. Mark Llewellyn ©

CNT 4714: Servlets – Part 2 Page 5 Dr. Mark Llewellyn ©

A Tour of Tomcat
• Before we look into creating our own servlets, we need to look more

closely at Tomcat. This will help you better understand how web

applications are developed and deployed.

• The directory structure within Tomcat looks like the one shown on

the next page. It contains, among other things, seven directories

named, bin, conf, lib, logs, webapps, work, and

temp.

bin

• Directory bin contains scripts for starting and stopping Tomcat as

well as some additional tools.

conf

• Directory conf contains files used to configure Tomcat at the global

level, although it is possible for each web application to override
many of the values provided in this directory.

CNT 4714: Servlets – Part 2 Page 6 Dr. Mark Llewellyn ©

Tomcat Directory Structure

CNT 4714: Servlets – Part 2 Page 7 Dr. Mark Llewellyn ©

A Tour of Tomcat (cont.)

• The most important file inside the conf directory is server.xml,

which tells Tomcat the set of services to run when it starts up as well

as what port to listen to. This file also specifies the set of resources to

make available to applications and a number of security parameters.

A portion of this file (the part illustrating the non-SSL HTTP port) is

shown on page 8.

• There is also a web.xml file in this directory, which establishes

default values that may be overridden by values in each applications

web.xml file. A portion of this file is shown on page 9.

• The file jk2.properties defines a set of properties that are used

when Tomcat is installed as an application server in conjunction with

an external web server such as Apache or IIS. In these notes we will

assume that Tomcat is running in stand-alone mode, where it operates

as both a web server and application server.

CNT 4714: Servlets – Part 2 Page 8 Dr. Mark Llewellyn ©

A portion of the server.xml

file illustrating the

connection port for

Tomcat.

CNT 4714: Servlets – Part 2 Page 9 Dr. Mark Llewellyn ©

A portion of the web.xml file

contained in the Tomcat conf

directory.

Default set of welcome

files to be used by

Tomcat. We’ll create

one of these files later.

CNT 4714: Servlets – Part 2 Page 10 Dr. Mark Llewellyn ©

A Tour of Tomcat (cont.)

logs

• The logs directory contains a n umber of log files created by Tomcat.

The file catalina.out contains anything written to

System.out and System.err, as well as information relevant to

the server as a whole.

lib

• In previous versions of Tomcat, this directory was named common

and contained three subdirectories – classes, lib, and endorsed –

which contain code used by Tomcat. The newer versions of Tomcat,

beginning with version 6.0.29, have condensed these into a single

directory named lib. Any custom .jar files that may be needed

throughout Tomcat, such as a JDBC driver, are placed in this

directory.

CNT 4714: Servlets – Part 2 Page 11 Dr. Mark Llewellyn ©

A Tour of Tomcat (cont.)

webapps

• This directory contains all the web applications Tomcat is configured

to run, one web application per subdirectory. We will be placing the

web applications that we develop into subdirectories in this directory.

We’ll look in more detail at the structure of these subdirectories a bit

later.

work

• This directory is used by Tomcat to hold servlets that are built from

JSP pages. Users will typically not need anything in this directory.

temp

• This directory is used internally by Tomcat and can be ignored.

CNT 4714: Servlets – Part 2 Page 12 Dr. Mark Llewellyn ©

Servlet Interface
• The servlet packages define two abstract classes that implement

interface Servlet – class GenericServlet (from the

package javax.servlet) and class HttpServlet (from the

package javax.servlet.http).

• These classes provide default implementations of some Servlet

methods.

• Most servlets extend either GenericServlet or

HttpServlet and override some or all of their methods.

• The GenericServlet is a protocol-independent servlet, while

the HttpServlet uses the HTTP protocol to exchange

information between the client and server.

• We’re going to focus exclusively on the HttpServlet used on

the Web.

CNT 4714: Servlets – Part 2 Page 13 Dr. Mark Llewellyn ©

Servlet Interface (cont.)

• HttpServlet defines enhanced processing capabilities

for services that extend a Web server’s functionality.

• The key method in every servlet is service, which accepts

both a ServletRequest object and a

ServletResponse object. These object provide access to

input and output streams that allow the servlet to read data

from and send data to the client.

• If a problem occurs during the execution of a servlet, either

ServletExceptions or IOExceptions are thrown to

indicate the problem.

CNT 4714: Servlets – Part 2 Page 14 Dr. Mark Llewellyn ©

HTTPServlet Class
• Servlets typically extend class HttpServlet, which

overrides method service to distinguish between the various

requests received from a client web browser.

• The two most common HTTP request types (also known as
request methods) are get and post. (See also Servlets – Part

1 notes.)

– A get request retrieves information from a server. Typically, an

HTML document or image.

– A post request sends data to a server. Typically, post requests are

used to pass user input to a data-handling process, store or update

data on a server, or post a message to a news group or discussion

forum.

• Class HttpServlet defines methods doGet and doPost

to respond to get and post requests from a client.

CNT 4714: Servlets – Part 2 Page 15 Dr. Mark Llewellyn ©

HTTPServlet Class (cont.)

• Methods doGet and doPost are invoked by method

service, which is invoked by the servlet container when a

request arrives at the server.

• Method service first determines the request type, the invokes

the appropriate method for handling such a request.

• In addition to methods doGet and doPost, the following

methods are defined in class HttpServlet:

– doDelete (typically deletes a file from the server)

– doHead (client wants only response headers no entire body)

– doOptions (returns HTTP options supported by server)

– doPut (typically stores a file on the server)

– doTrace (for debugging purposes)

CNT 4714: Servlets – Part 2 Page 16 Dr. Mark Llewellyn ©

HTTPServletRequest Interface
• Every invocation of doGet or doPost for an

HttpServlet receives an object that implements

interface HttpServletRequest.

• The servlet container creates an HttpServletRequest

object and passes it to the servlet’s service method, which

in turn, passes it to doGet or doPost.

• This object contains the clients’ request and provides

methods that enable the servlet to process the request.

• The full list of HttpServletRequest methods is available at:

www.java.sun.com/j2ee/1.4/docs/api/index.html, however, a

few of the more common ones are shown on page 19. (Note:

you can also get to them from Tomcat, see next page.)

http://www.java.sun.com/j2ee/1.4/docs/api/index.html
http://www.java.sun.com/j2ee/1.4/docs/api/index.html
http://www.java.sun.com/j2ee/1.4/docs/api/index.html
http://www.java.sun.com/j2ee/1.4/docs/api/index.html
http://www.java.sun.com/j2ee/1.4/docs/api/index.html
http://www.java.sun.com/j2ee/1.4/docs/api/index.html
http://www.java.sun.com/j2ee/1.4/docs/api/index.html
http://www.java.sun.com/j2ee/1.4/docs/api/index.html
http://www.java.sun.com/j2ee/1.4/docs/api/index.html
http://www.java.sun.com/j2ee/1.4/docs/api/index.html
http://www.java.sun.com/j2ee/1.4/docs/api/index.html
http://www.java.sun.com/j2ee/1.4/docs/api/index.html
http://www.java.sun.com/j2ee/1.4/docs/api/index.html
http://www.java.sun.com/j2ee/1.4/docs/api/index.html
http://www.java.sun.com/j2ee/1.4/docs/api/index.html

CNT 4714: Servlets – Part 2 Page 17 Dr. Mark Llewellyn ©

This link will take you to the servlet

specification pages.

CNT 4714: Servlets – Part 2 Page 18 Dr. Mark Llewellyn ©

HTTPServletRequest Methods
• Cookie[] getCookies() – returns an array of Cookie

objects stored on the client by the server. Cookies are used

to uniquely identify clients to the server.

• String getLocalName() – gets the host name on

which the request was received.

• String getLocalAddr() – gets the IP address on

which the request was received.

• int getLocalPort() – gets the IP port number on

which the request was received.

• String getParameter(String name) – gets the

value of a parameter set to the servlet as part of a get or

post request.

CNT 4714: Servlets – Part 2 Page 19 Dr. Mark Llewellyn ©

HTTPServletResponse Interface
• Every invocation of doGet or doPost for an

HttpServlet receives an object that implements

interface HttpServletResponse.

• The servlet container creates an HttpServletResponse

object and passes it to the servlet’s service method, which

in turn, passes it to doGet or doPost.

• This object provides methods that enable the servlet to

formulate the response to the client.

• The full list of HttpServletRequest methods is available at:

www.java.sun.com/j2ee/1.4/docs/api/index.html, however, a

few of the more common ones are shown on the next page.

(Also accessible from Tomcat.)

http://www.java.sun.com/j2ee/1.4/docs/api/index.html
http://www.java.sun.com/j2ee/1.4/docs/api/index.html
http://www.java.sun.com/j2ee/1.4/docs/api/index.html
http://www.java.sun.com/j2ee/1.4/docs/api/index.html
http://www.java.sun.com/j2ee/1.4/docs/api/index.html
http://www.java.sun.com/j2ee/1.4/docs/api/index.html
http://www.java.sun.com/j2ee/1.4/docs/api/index.html
http://www.java.sun.com/j2ee/1.4/docs/api/index.html
http://www.java.sun.com/j2ee/1.4/docs/api/index.html
http://www.java.sun.com/j2ee/1.4/docs/api/index.html
http://www.java.sun.com/j2ee/1.4/docs/api/index.html
http://www.java.sun.com/j2ee/1.4/docs/api/index.html
http://www.java.sun.com/j2ee/1.4/docs/api/index.html
http://www.java.sun.com/j2ee/1.4/docs/api/index.html
http://www.java.sun.com/j2ee/1.4/docs/api/index.html

CNT 4714: Servlets – Part 2 Page 20 Dr. Mark Llewellyn ©

HTTPServletResponse Methods
• void addCookie (Cookie cookie) – adds a Cookie to

the header of the response to the client.

• ServletOutputStream getOutputStream() – gets a

byte-based output stream for sending binary data to the client.

• PrintWriter getWriter() – gets a character-based

output stream for sending text data (typically HTML formatted

text) to the client.

• void SetContentType (String type) – specifies the

content type of the response to the browser to assist in

displaying the data.

• void getContentType() – gets the content type of the

response.

CNT 4714: Servlets – Part 2 Page 21 Dr. Mark Llewellyn ©

Handling HTTP get Requests
• The primary purpose of an HTTP get request is to

retrieve the contents of a specified URL, which is typically
an HTML or XHTML document.

• Before we look at a complete implementation of a servlet
execution, let’s examine the Java code that is required for
a basic servlet.

• Shown on the next page is a servlet that responds to an
HTTP get request. This is a simple welcome servlet and
is about as simple a servlet as is possible.

• Note: Tomcat will look for an index.html, or
welcome.html files to run as a default “home page”.
At this point we haven’t set one up so the initial screen for
our web application will not be too pretty.

CNT 4714: Servlets – Part 2 Page 22 Dr. Mark Llewellyn ©

XHTML document

returned to the client

Set MIME content type

doGet handles the HTTP get

request – override method

End the XHTML document

generated by the servlet.

Class name WelcomeServlet

CNT 4714: Servlets – Part 2 Page 23 Dr. Mark Llewellyn ©

Handling HTTP get Requests (cont.)

• The servlet creates an XHTML document containing the

text “Hello! Welcome to the Exciting World of Servlet

Technology!”

• This text is the response to the client and is sent through the
PrintWriter object obtained from the

HttpServletRepsonse object.

• The response object’s setContentType method is used to

specify the type of data to be sent as the response to the client.

In this case it is defined as text/html, we’ll look at other types

later. In this case the browser knows that it must read the

XHTML tags and format the document accordingly.

• The content type is also known as the MIME (Multipurpose

Internet Mail Extension) type of the data.

CNT 4714: Servlets – Part 2 Page 24 Dr. Mark Llewellyn ©

Creating a Web Application
• One of the fundamental ideas behind Tomcat is that of a web

application.

• A web application is a collection of pages, code, and

configurations that is treated as a unit.

• Normally a web application will map to a particular URL, so

URLs such as http://somesite.com/app1 and

http://somesite.com/app2 will invoke different web applications
called app1 and app2 respectively.

• Tomcat can contain an arbitrary number of web applications

simultaneously.

• While web applications can be extremely complex, we’ll start

out with a minimal web application and build from there.

http://somesite.com/app1
http://somesite.com/app1
http://somesite.com/app1
http://somesite.com/app1
http://somesite.com/app1
http://somesite.com/app1
http://somesite.com/app2
http://somesite.com/app2
http://somesite.com/app2
http://somesite.com/app2
http://somesite.com/app2
http://somesite.com/app2

CNT 4714: Servlets – Part 2 Page 25 Dr. Mark Llewellyn ©

Creating a Web Application (cont.)

• The most basic web application in Tomcat will require the
creation of a directory inside the webapps directory to hold

the web application. For this first example, we’ll create a
subdirectory called first-example.

Create this directory inside the
webapps directory of Tomcat.

CNT 4714: Servlets – Part 2 Page 26 Dr. Mark Llewellyn ©

Creating a Web Application (cont.)

• Within the first-example directory we need to create a

directory that will hold the configuration and all of the

resources for the web application. This directory must be called
WEB-INF.

• The most important and only required element in WEB-INF is

the file web.xml. The web.xml file controls everything

specific to the current web application. We’ll look at this file in

more detail later as we add to it, but for now we’ll look only at

the components of this file that are essential for a very simple

web application.

• The next page illustrates our initial web.xml file.

CNT 4714: Servlets – Part 2 Page 27 Dr. Mark Llewellyn ©

Notepad++ View

The web-app tag

Optional display-name tag.

Used by administrator tools.

Optional description for reading the

xml file.

Servlet declaration. Specifies the name of the

servlet, the implementing class file, and any

initialization parameters.

Servlet mapping associates a servlet name with a

class of URLs. One servlet may be configured to

handle multiple sets of URLs, however, only one

servlet can handle any given URL.

CNT 4714: Servlets – Part 2 Page 28 Dr. Mark Llewellyn ©

Notepad++ View

CNT 4714: Servlets – Part 2 Page 29 Dr. Mark Llewellyn ©

Internet Explorer (XML) Editor View

CNT 4714: Servlets – Part 2 Page 30 Dr. Mark Llewellyn ©

Creating a Web Application (cont.)

• With these directories and files in place, Tomcat will be able to

respond to a request for the page from a client at

http://localhost:8080/first-example/WelcomeServlet.html.

• Other HTML and JSP pages can be added at will, along with

images, MP3 files, and just about anything else.

• Although what we have just seen is all that is required to create

a minimal web application, much more is possible with a

knowledge of how web applications are arranged and we will

see this as we progress through this technology.

• The next few slides illustrate the execution of our simple web

application (a welcome servlet).

http://localhost:8080/first-examples/WelcomeServlet.html
http://localhost:8080/first-examples/WelcomeServlet.html
http://localhost:8080/first-examples/WelcomeServlet.html
http://localhost:8080/first-examples/WelcomeServlet.html
http://localhost:8080/first-examples/WelcomeServlet.html
http://localhost:8080/first-examples/WelcomeServlet.html
http://localhost:8080/first-examples/WelcomeServlet.html
http://localhost:8080/first-examples/WelcomeServlet.html
http://localhost:8080/first-examples/WelcomeServlet.html
http://localhost:8080/first-examples/WelcomeServlet.html

CNT 4714: Servlets – Part 2 Page 31 Dr. Mark Llewellyn ©

Tomcat/Java Configuration - The Servlet API

IMPORTANT ! !

• Your Tomcat installation includes the servlet-api.jar

file. This file can be found in the lib folder in Tomcat.

Copy this file into your jdk/jre/lib/ext folder to

allow the java compiler access to the javax.servlet

package.

• Note that your Java set-up may already have this installed

depending on several things, so check your

jdk/jre/lib/ext folder first.

CNT 4714: Servlets – Part 2 Page 32 Dr. Mark Llewellyn ©

Tomcat/Java Configuration - The Servlet API

This is the .jar file that you

need to copy into your
jre/lib/ext folder.

CNT 4714: Servlets – Part 2 Page 33 Dr. Mark Llewellyn ©

Tomcat/Java Configuration - The Servlet API

You need this .jar file here

to allow your Java

environment to interface to

the servlet container

provided by Tomcat.

You should already have

this file here when you set-

up MySQL and Java.

CNT 4714: Servlets – Part 2 Page 34 Dr. Mark Llewellyn ©

This is the XHTML file

that generates the output

shown above which

informs the client how to

invoke the servlet.

CNT 4714: Servlets – Part 2 Page 35 Dr. Mark Llewellyn ©

Client invokes the WelcomeServlet

page from the web application

named first-examples.

CNT 4714: Servlets – Part 2 Page 36 Dr. Mark Llewellyn ©

Execution of the WelcomeServlet servlet

Page 31

CNT 4714: Servlets – Part 2 Page 37 Dr. Mark Llewellyn ©

An XHTML Document
• The XHTML document shown on page 33 provides a form

that invokes the servlet defined on page 22.

• The form’s action attribute (/first-example/welcome1)

specifies the URL path that invokes the servlet.

• The form’s method attribute indicates that the browser sends a

get request to the server, which results in a call to the servlet’s
doGet method.

– We’ll look at how to set-up the URL’s and deployment structure

in the next set of notes.

CNT 4714: Servlets – Part 2 Page 38 Dr. Mark Llewellyn ©

Set-Up For First Web Application
• The exact set-up you need to use for setting up your web

application in Tomcat is summarized on the next couple of
pages.

1. In the Tomcat webapps folder create a directory named
first-example.

2. In the top level of first-example copy the
WelcomeServlet.html file from the course code page.

3. In the top level of first-example create a directory
named WEB-INF.

4. When steps 2 and 3 are complete the top level of first-
examples should look like the picture at the top of the next
page.

CNT 4714: Servlets – Part 2 Page 39 Dr. Mark Llewellyn ©

Set-Up For First Web Application (cont.)

• Copy the web.xml configuration file from the course code
page into the WEB-INF directory.

• At the top level of the WEB-INF directory create a directory
named classes.

• When steps 5 and 6 are complete, the WEB-INF directory
should look like the picture on the top of the next page.

Top level of first-example.

CNT 4714: Servlets – Part 2 Page 40 Dr. Mark Llewellyn ©

Set-Up For First Web Application (cont.)

8. Copy the WelcomeServlet.java file from the course code page into

the classes directory and compile it to produce the

WelcomeServlet.class file which should also reside in the classes

directory. (The .java file does not need to reside in this directory for a

servlet, but it is handy to keep the source in the same place.)

Top level of WEB-INF.

CNT 4714: Servlets – Part 2 Page 41 Dr. Mark Llewellyn ©

Set-Up For First Web Application (cont.)

9. Once the classes directory looks like the one shown

above. You are ready to invoke the servlet from a web

browser. Start Tomcat and enter the URL

http://localhost:8080/WelcomeServlet.html. Tomcat and the

servlet will do the rest. If all goes well you should see the

output that was shown on pages 35-36.

The classes directory

http://localhost:8080/WelcomeServlet.html
http://localhost:8080/WelcomeServlet.html
http://localhost:8080/WelcomeServlet.html
http://localhost:8080/WelcomeServlet.html
http://localhost:8080/WelcomeServlet.html
http://localhost:8080/WelcomeServlet.html
http://localhost:8080/WelcomeServlet.html
http://localhost:8080/WelcomeServlet.html

